Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.647
Filter
1.
Mol Oncol ; 16(2): 447-465, 2022 01.
Article in English | MEDLINE | ID: mdl-34657382

ABSTRACT

Breast cancer is the most diagnosed malignancy in women, with over half a million women dying from this disease each year. In our previous studies, ∆40p53, an N-terminally truncated p53 isoform, was found to be upregulated in breast cancers, and a high ∆40p53 : p53α ratio was linked with worse disease-free survival. Although p53α inhibits cancer migration and invasion, little is known about the role of ∆40p53 in regulating these metastasis-related processes and its role in contributing to worse prognosis. The aim of this study was to assess the role of ∆40p53 in breast cancer migration and invasion. A relationship between Δ40p53 and gene expression profiles was identified in oestrogen-receptor-positive breast cancer specimens. To further evaluate the role of Δ40p53 in oestrogen-receptor-positive breast cancer, MCF-7 and ZR75-1 cell lines were transduced to knockdown p53α or Δ40p53 and overexpress Δ40p53. Proliferation, migration and invasion were assessed in the transduced sublines, and gene expression was assessed through RNA-sequencing and validated by reverse-transcription quantitative PCR. Knockdown of both p53α and ∆40p53 resulted in increased proliferation, whereas overexpression of ∆40p53 reduced proliferation rates. p53α knockdown was also associated with increased cell mobility. ∆40p53 overexpression reduced both migratory and invasive properties of the transduced cells. Phenotypic findings are supported by gene expression data, including differential expression of LRG1, HYOU1, UBE2QL1, SERPINA5 and PCDH7. Taken together, these results suggest that, at the basal level, ∆40p53 works similarly to p53α in suppressing cellular mobility and proliferation, although the role of Δ40p53 may be cell context-specific.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Protein Isoforms/physiology , Tumor Suppressor Protein p53/physiology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/genetics
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34470826

ABSTRACT

Netrin-1, a secreted protein recently characterized as a relevant cancer therapeutic target, is the antiapoptotic ligand of the dependence receptors deleted in colorectal carcinoma and members of the UNC5H family. Netrin-1 is overexpressed in several aggressive cancers where it promotes cancer progression by inhibiting cell death induced by its receptors. Interference of its binding to its receptors has been shown, through the development of a monoclonal neutralizing antinetrin-1 antibody (currently in phase II of clinical trial), to actively induce apoptosis and tumor growth inhibition. The transcription factor p53 was shown to positively regulate netrin-1 gene expression. We show here that netrin-1 could be a target gene of the N-terminal p53 isoform Δ40p53, independent of full-length p53 activity. Using stable cell lines, harboring wild-type or null-p53, in which Δ40p53 expression could be finely tuned, we prove that Δ40p53 binds to and activates the netrin-1 promoter. In addition, we show that forcing immortalized human skeletal myoblasts to produce the Δ40p53 isoform, instead of full-length p53, leads to the up-regulation of netrin-1 and its receptor UNC5B and promotes cell survival. Indeed, we demonstrate that netrin-1 interference, in the presence of Δ40p53, triggers apoptosis in cancer and primary cells, leading to tumor growth inhibition in preclinical in vivo models. Finally, we show a positive correlation between netrin-1 and Δ40p53 gene expression in human melanoma and colorectal cancer biopsies. Hence, we propose that inhibition of netrin-1 binding to its receptors should be a promising therapeutic strategy in human tumors expressing high levels of Δ40p53.


Subject(s)
Carcinogenesis , Netrin Receptors/physiology , Netrin-1/physiology , Protein Isoforms/physiology , Tumor Suppressor Protein p53/physiology , Up-Regulation/physiology , Apoptosis/physiology , Cell Line, Tumor , Gene Silencing , Humans , Netrin-1/genetics , Promoter Regions, Genetic , Protein Binding
3.
Mol Brain ; 14(1): 145, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34544471

ABSTRACT

The CACNA1H gene encodes the α1 subunit of the low voltage-activated Cav3.2 T-type calcium channel, an important regulator of neuronal excitability. Alternative mRNA splicing can generate multiple channel variants with distinct biophysical properties and expression patterns. Two major splice variants, containing or lacking exon 26 (± 26) have been found in different human tissues. In this study, we report splice variant specific effects of a Cav3.2 mutation found in patients with autosomal dominant writer's cramp, a specific type of focal dystonia. We had previously reported that the R481C missense mutation caused a gain of function effect when expressed in Cav3.2 (+ 26) by accelerating its recovery from inactivation. Here, we show that when the mutation is expressed in the short variant of the channel (- 26), we observe a significant increase in current density when compared to wild-type Cav3.2 (- 26) but the effect on the recovery from inactivation is lost. Our data add to growing evidence that the functional expression of calcium channel mutations depends on which splice variant is being examined.


Subject(s)
Calcium Channels, T-Type/genetics , Dystonic Disorders/genetics , Action Potentials , Alternative Splicing , Barium/metabolism , Calcium Channels, T-Type/physiology , Dystonic Disorders/physiopathology , Exons/genetics , Gain of Function Mutation , Humans , Ion Transport , Models, Molecular , Mutation, Missense , Point Mutation , Protein Isoforms/genetics , Protein Isoforms/physiology
4.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34445333

ABSTRACT

Lynch syndrome (LS) is one of the most common hereditary cancer predisposition syndromes worldwide. Individuals with LS have a high risk of developing colorectal or endometrial cancer, as well as several other cancers. LS is caused by autosomal dominant pathogenic variants in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, PMS2 or MSH6, and typically include truncating variants, such as frameshift, nonsense or splicing variants. However, a significant number of missense, intronic, or silent variants, or small in-frame insertions/deletions, are detected during genetic screening of the MMR genes. The clinical effects of these variants are often more difficult to predict, and a large fraction of these variants are classified as variants of uncertain significance (VUS). It is pivotal for the clinical management of LS patients to have a clear genetic diagnosis, since patients benefit widely from screening, preventive and personal therapeutic measures. Moreover, in families where a pathogenic variant is identified, testing can be offered to family members, where non-carriers can be spared frequent surveillance, while carriers can be included in cancer surveillance programs. It is therefore important to reclassify VUSs, and, in this regard, functional assays can provide insight into the effect of a variant on the protein or mRNA level. Here, we briefly describe the disorders that are related to MMR deficiency, as well as the structure and function of MSH6. Moreover, we review the functional assays that are used to examine VUS identified in MSH6 and discuss the results obtained in relation to the ACMG/AMP PS3/BS3 criterion. We also provide a compiled list of the MSH6 variants examined by these assays. Finally, we provide a future perspective on high-throughput functional analyses with specific emphasis on the MMR genes.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Techniques , Animals , DNA-Binding Proteins/classification , DNA-Binding Proteins/physiology , Genetic Testing/methods , Humans , Mutant Proteins/classification , Mutant Proteins/genetics , Mutant Proteins/physiology , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/physiology , RNA Splicing/genetics
5.
Nucleic Acids Res ; 49(15): 8836-8865, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34329465

ABSTRACT

The Caenorhabditis elegans genome encodes nineteen functional Argonaute proteins that use 22G-RNAs, 26G-RNAs, miRNAs or piRNAs to regulate target transcripts. Only one Argonaute is essential under normal laboratory conditions: CSR-1. While CSR-1 has been studied widely, nearly all studies have overlooked the fact that the csr-1 locus encodes two isoforms. These isoforms differ by an additional 163 amino acids present in the N-terminus of CSR-1a. Using CRISPR-Cas9 genome editing to introduce GFP::3xFLAG into the long (CSR-1a) and short (CSR-1b) isoforms, we found that CSR-1a is expressed during spermatogenesis and in several somatic tissues, including the intestine. CSR-1b is expressed constitutively in the germline. small RNA sequencing of CSR-1 complexes shows that they interact with partly overlapping sets of 22G-RNAs. Phenotypic analyses reveal that the essential functions of csr-1 described in the literature coincide with CSR-1b, while CSR-1a plays tissue specific functions. During spermatogenesis, CSR-1a integrates into an sRNA regulatory network including ALG-3, ALG-4 and WAGO-10 that is necessary for fertility at 25°C. In the intestine, CSR-1a silences immunity and pathogen-responsive genes, and its loss results in improved survival from the pathogen Pseudomonas aeruginosa. Our findings functionally distinguish the CSR-1 isoforms and highlight the importance of studying each AGO isoform independently.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Spermatogenesis/genetics , Alleles , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Female , Fertility , Gene Expression , Male , Mutation , Oocytes/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/physiology , RNA, Small Untranslated/metabolism , Spermatozoa/metabolism
6.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298981

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors expressed in the skin. Three PPAR isotypes, α (NRC1C1), ß or δ (NRC1C2) and γ (NRC1C3), have been identified. After activation through ligand binding, PPARs heterodimerize with the 9-cis-retinoic acid receptor (RXR), another nuclear hormone receptor, to bind to specific PPAR-responsive elements in regulatory regions of target genes mainly involved in organogenesis, cell proliferation, cell differentiation, inflammation and metabolism of lipids or carbohydrates. Endogenous PPAR ligands are fatty acids and fatty acid metabolites. In past years, much emphasis has been given to PPARα and γ in skin diseases. PPARß/δ is the least studied PPAR family member in the skin despite its key role in several important pathways regulating inflammation, keratinocyte proliferation and differentiation, metabolism and the oxidative stress response. This review focuses on the role of PPARß/δ in keratinocytes and its involvement in psoriasis and atopic dermatitis. Moreover, the relevance of targeting PPARß/δ to alleviate skin inflammation is discussed.


Subject(s)
Dermatitis, Atopic/metabolism , Keratinocytes/metabolism , PPAR delta/physiology , Psoriasis/metabolism , Skin/metabolism , Anaerobiosis , Animals , Dimerization , Eicosanoids/metabolism , Fatty Acids/metabolism , Glycolysis , Humans , Mice , Mice, Mutant Strains , Organ Specificity , Phosphorylation , Protein Isoforms/physiology , Protein Processing, Post-Translational , Proteolysis , Retinoid X Receptors/metabolism , Skin/pathology
7.
Biochimie ; 188: 35-44, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34097985

ABSTRACT

Skin is the most vulnerable organ of the human body since it is the first line of defense, covering the entire external body surface. Additionally, skin has a critical role in thermoregulation, sensation, immunological surveillance, and biochemical processes such as Vitamin D3 production by ultraviolet irradiation. The ability of the skin layers and resident cells to maintain skin physiology, such as hydration, regulation of keratinocytes proliferation and differentiation and wound healing, is supported by key proteins such as aquaporins (AQPs) that facilitate the movements of water and small neutral solutes across membranes. Various AQP isoforms have been detected in different skin-resident cells where they perform specific roles, and their dysregulation has been associated with several skin pathologies. This review summarizes the current knowledge of AQPs involvement in skin physiology and pathology, highlighting their potential as druggable targets for the treatment of skin disorders.


Subject(s)
Aquaporins/physiology , Skin Diseases/physiopathology , Skin Diseases/therapy , Skin/metabolism , Animals , Aquaporins/drug effects , Glycerol/metabolism , Humans , Molecular Targeted Therapy , Protein Isoforms/drug effects , Protein Isoforms/physiology , Water/metabolism
8.
PLoS One ; 16(6): e0253223, 2021.
Article in English | MEDLINE | ID: mdl-34133460

ABSTRACT

The calcium-/calmodulin dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinases (MAGUK) family of proteins. It fulfils several different cellular functions, ranging from acting as a scaffold protein to transcription control, as well as regulation of receptor sorting. CASK functions depend on the interaction with a variety of partners, for example neurexin, liprin-α, Tbr1 and SAP97. So far, it is uncertain how these seemingly unrelated interactions and resulting functions of CASK are regulated. Here, we show that alternative splicing of CASK can guide the binding affinity of CASK isoforms to distinct interaction partners. We report seven different variants of CASK expressed in the fetal human brain. Four out of these variants are not present in the NCBI GenBank database as known human variants. Functional analyses showed that alternative splicing affected the affinities of CASK variants for several of the tested interaction partners. Thus, we observed a clear correlation of the presence of one splice insert with poor binding of CASK to SAP97, supported by molecular modelling. The alternative splicing and distinct properties of CASK variants in terms of protein-protein interaction should be taken into consideration for future studies.


Subject(s)
Brain/metabolism , Guanylate Kinases/metabolism , Alternative Splicing , Brain/embryology , Discs Large Homolog 1 Protein/metabolism , Female , Guanylate Kinases/chemistry , Guanylate Kinases/physiology , Humans , Models, Molecular , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/physiology
9.
Mol Neurodegener ; 16(1): 25, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33853653

ABSTRACT

BACKGROUND: Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS: AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS: We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS: We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.


Subject(s)
Alternative Splicing , Apoptosis Inducing Factor/physiology , Mitochondria/metabolism , Nerve Degeneration/genetics , Adolescent , Adult , Aged , Amino Acid Sequence , Animals , Apoptosis Inducing Factor/deficiency , Apoptosis Inducing Factor/genetics , Cells, Cultured , Child , Disease Models, Animal , Exons/genetics , Female , Frontal Lobe/chemistry , Gain of Function Mutation , Gene Editing , Gene Knock-In Techniques , Humans , Infant , Infant, Newborn , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Loss of Function Mutation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Middle Aged , Neurons/metabolism , Oxidation-Reduction , Oxygen Consumption , Protein Isoforms/genetics , Protein Isoforms/physiology
10.
Mol Neurodegener ; 16(1): 19, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33766097

ABSTRACT

BACKGROUND: CD33 is genetically linked to Alzheimer's disease (AD) susceptibility through differential expression of isoforms in microglia. The role of the human CD33 short isoform (hCD33m), preferentially encoded by an AD-protective CD33 allele (rs12459419T), is unknown. Here, we test whether hCD33m represents a loss-of-function or gain-of-function variant. METHODS: We have developed two models to test the role of hCD33m. The first is a new strain of transgenic mice expressing hCD33m in the microglial cell lineage. The second is U937 cells where the CD33 gene was disrupted by CRISPR/Cas9 and complemented with different variants of hCD33. Primary microglia and U937 cells were tested in phagocytosis assays and single cell RNA sequencing (scRNAseq) was carried out on the primary microglia. Furthermore, a new monoclonal antibody was developed to detect hCD33m more efficiently. RESULTS: In both primary microglia and U937 cells, we find that hCD33m enhances phagocytosis. This contrasts with the human CD33 long isoform (hCD33M) that represses phagocytosis, as previously demonstrated. As revealed by scRNAseq, hCD33m+ microglia are enriched in a cluster of cells defined by an upregulated expression and gene regulatory network of immediate early genes, which was further validated within microglia in situ. Using a new hCD33m-specific antibody enabled hCD33m expression to be examined, demonstrating a preference for an intracellular location. Moreover, this newly discovered gain-of-function role for hCD33m is dependent on its cytoplasmic signaling motifs, dominant over hCD33M, and not due to loss of glycan ligand binding. CONCLUSIONS: These results provide strong support that hCD33m represents a gain-of-function isoform and offers insight into what it may take to therapeutically capture the AD-protective CD33 allele.


Subject(s)
Amyloid beta-Peptides/metabolism , Microglia/physiology , Peptide Fragments/metabolism , Phagocytosis/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , Alleles , Animals , CRISPR-Cas Systems , Crosses, Genetic , Female , Gain of Function Mutation , Gene Editing , Gene Regulatory Networks , Genes, Immediate-Early , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Polysaccharides/metabolism , Protein Isoforms/genetics , Protein Isoforms/physiology , RNA-Seq , Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors , Sialic Acid Binding Ig-like Lectin 3/physiology , Single-Cell Analysis , U937 Cells
11.
Nat Med ; 27(4): 659-667, 2021 04.
Article in English | MEDLINE | ID: mdl-33633408

ABSTRACT

To identify circulating proteins influencing Coronavirus Disease 2019 (COVID-19) susceptibility and severity, we undertook a two-sample Mendelian randomization (MR) study, rapidly scanning hundreds of circulating proteins while reducing bias due to reverse causation and confounding. In up to 14,134 cases and 1.2 million controls, we found that an s.d. increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (odds ratio (OR) = 0.54, P = 7 × 10-8), hospitalization (OR = 0.61, P = 8 × 10-8) and susceptibility (OR = 0.78, P = 8 × 10-6). Measuring OAS1 levels in 504 individuals, we found that higher plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 susceptibility and severity. Further analyses suggested that a Neanderthal isoform of OAS1 in individuals of European ancestry affords this protection. Thus, evidence from MR and a case-control study support a protective role for OAS1 in COVID-19 adverse outcomes. Available pharmacological agents that increase OAS1 levels could be prioritized for drug development.


Subject(s)
2',5'-Oligoadenylate Synthetase/physiology , COVID-19/etiology , Genetic Predisposition to Disease , SARS-CoV-2 , 2',5'-Oligoadenylate Synthetase/genetics , Aged , Aged, 80 and over , Animals , COVID-19/genetics , Case-Control Studies , Female , Humans , Interleukin-10 Receptor beta Subunit/genetics , Male , Mendelian Randomization Analysis , Middle Aged , Neanderthals , Protein Isoforms/physiology , Quantitative Trait Loci , Severity of Illness Index , White People
12.
J Hum Evol ; 151: 102938, 2021 02.
Article in English | MEDLINE | ID: mdl-33493971

ABSTRACT

Skeletal muscle fiber types are important determinants of the contractile properties of muscle fibers, such as fatigue resistance and shortening velocity. Yet little is known about how jaw-adductor fiber types correlate with feeding behavior in primates. Compared with chimpanzees and bonobos, gorillas spend a greater percentage of their daily time feeding and shift to herbaceous vegetation when fruits are scarce. We thus used the African apes to test the hypothesis that chewing with unusually high frequency is correlated with the expression in the jaw adductors of a high proportion of type 1 (slow, fatigue-resistant) fibers at the expense of other fiber types (the Frequent Recruitment Hypothesis). We used immunohistochemistry to determine the presence and distribution of the four major myosin heavy chain (MHC) isoforms in the anterior superficial masseter (ASM), superficial anterior temporalis, and deep anterior temporalis of four Gorilla gorilla, two Pan paniscus, and four Pan troglodytes. Serial sections were stained against slow (MHC-1/-α-cardiac) and fast (MHC-2/-M) fibers. Fibers were counted and scored for staining intensity, and fiber cross-sectional areas (CSAs) were measured and used to estimate percentage of CSA of each MHC isoform. Hybrid fibers accounted for nearly 100% of fiber types in the masseter and temporalis of all three species, resulting in three main hybrid phenotypes. As predicted, the gorilla ASM and deep anterior temporalis comprised a greater percentage of CSA of the slower, fatigue-resistant hybrid fiber type, significantly so for the ASM (p = 0.015). Finally, the results suggest that fiber phenotype of the chewing muscles contributes to behavioral flexibility in ways that would go undetected in paleontological studies relying solely on morphology of the bony masticatory apparatus.


Subject(s)
Gorilla gorilla/physiology , Masticatory Muscles/physiology , Muscle Fibers, Skeletal/physiology , Myosin Heavy Chains/physiology , Pan paniscus/physiology , Pan troglodytes/physiology , Animals , Phenotype , Protein Isoforms/physiology
13.
Am J Physiol Endocrinol Metab ; 320(3): E609-E618, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33459178

ABSTRACT

Obesity is associated with alterations in hepatic lipid metabolism. We previously identified the prorenin receptor (PRR) as a potential contributor to liver steatosis. Therefore, we aimed to determine the relative contribution of PRR and its soluble form, sPRR, to lipid homeostasis. PRR-floxed male mice were treated with an adeno-associated virus with thyroxine-binding globulin promoter-driven Cre to delete PRR in the liver [liver PRR knockout (KO) mice]. Hepatic PRR deletion did not change the body weight but increased liver weights. The deletion of PRR in the liver decreased peroxisome proliferator-activated receptor gamma (PPARγ) and triglyceride levels, but liver PRR KO mice exhibited higher plasma cholesterol levels and lower hepatic low-density lipoprotein receptor (LDLR) and Sortilin 1 (SORT1) proteins than control (CTL) mice. Surprisingly, hepatic PRR deletion elevated hepatic cholesterol, and up-regulated hepatic sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA-R) genes. In addition, the plasma levels of sPRR were significantly higher in liver PRR KO mice than in controls. In vitro studies in HepG2 cells demonstrated that sPRR treatment upregulated SREBP2, suggesting that sPRR could contribute to hepatic cholesterol biosynthesis. Interestingly, PRR, total cleaved and noncleaved sPRR contents, furin, and Site-1 protease (S1P) were elevated in the adipose tissue of liver PRR KO mice, suggesting that adipose tissue could contribute to the circulating pool of sPRR. Overall, this work supports previous works and opens a new area of investigation concerning the function of sPRR in lipid metabolism and adipose tissue-liver cross talk.NEW & NOTEWORTHY Hepatic PRR and its soluble form, sPRR, contribute to triglyceride and cholesterol homeostasis and hepatic inflammation. Deletion of hepatic PRR decreased triglyceride levels through a PRR-PPARγ-dependent mechanism but increased hepatic cholesterol synthesis through sPRR-medicated upregulation of SREBP-2. Our study highlighted a new paradigm of cross talk between the liver and the adipose tissue involving cholesterol and sPRR.


Subject(s)
Homeostasis/genetics , Lipid Metabolism/genetics , Receptors, Cell Surface/physiology , Adipose Tissue/metabolism , Animals , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Hep G2 Cells , Humans , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Protein Isoforms/genetics , Protein Isoforms/physiology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Solubility , Triglycerides/metabolism , Prorenin Receptor
14.
Cancer Res ; 81(4): 1111-1122, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33323379

ABSTRACT

The Brg/Brahma-associated factor (BAF, mSWI/SNF) chromatin remodeling complex is of importance in development and has been linked to prostate oncogenesis. The oncogenic MUC1-C protein promotes lineage plasticity in the progression of neuroendocrine prostate cancer (NEPC), however, there is no known association between MUC1-C and BAF. We report here that MUC1-C binds directly to the E2F1 transcription factor and that the MUC1-C→E2F1 pathway induces expression of embryonic stem cell-specific BAF (esBAF) components BRG1, ARID1A, BAF60a, BAF155, and BAF170 in castrate-resistant prostate cancer (CRPC) and NEPC cells. In concert with this previously unrecognized pathway, MUC1 was associated with increased expression of E2F1 and esBAF components in NEPC tumors as compared with CRPC, supporting involvement of MUC1-C in activating the E2F1→esBAF pathway with progression to NEPC. MUC1-C formed a nuclear complex with BAF and activated cancer stem cell (CSC) gene signatures and the core pluripotency factor gene network. The MUC1-C→E2F1→BAF pathway was necessary for induction of both the NOTCH1 effector of CSC function and the NANOG pluripotency factor, and collectively, this network drove CSC self-renewal. These findings indicate that MUC1-C promotes NEPC progression by integrating activation of E2F1 and esBAF with induction of NOTCH1, NANOG, and stemness. SIGNIFICANCE: These findings show that MUC1-C, which promotes prostate cancer progression, activates a novel pathway that drives the BAF remodeling complex, induces NOTCH1 and NANOG, and promotes self-renewal of prostate cancer stem cells.


Subject(s)
Carcinoma, Neuroendocrine , Mucin-1/physiology , Multiprotein Complexes/genetics , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/pathology , Cell Self Renewal/genetics , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Male , Multiprotein Complexes/metabolism , Neoplastic Stem Cells/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Isoforms/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured
15.
J Biol Chem ; 296: 100070, 2021.
Article in English | MEDLINE | ID: mdl-33187980

ABSTRACT

Lipids in complex, protein-enriched films at air/liquid interfaces reduce surface tension. In the absence of this benefit, the light refracting and immunoprotective tear film on eyes would collapse. Premature collapse, coupled with chronic inflammation compromising visual acuity, is a hallmark of dry eye disease affecting 7 to 10% of individuals worldwide. Although collapse seems independent of mutation (unlike newborn lung alveoli), selective proteome and possible lipidome changes have been noted. These include elevated tissue transglutaminase and consequent inactivation through C-terminal cross-linking of the tear mitogen lacritin, leading to significant loss of lacritin monomer. Lacritin monomer restores homeostasis via autophagy and mitochondrial fusion and promotes basal tearing. Here, we discover that lacritin monomer C-terminal processing, inclusive of cysteine, serine, and metalloproteinase activity, generates cationic amphipathic α-helical proteoforms. Such proteoforms (using synthetic peptide surrogates) act like alveolar surfactant proteins to rapidly bind and stabilize the tear lipid layer. Immunodepletion of C- but not N-terminal proteoforms nor intact lacritin, from normal human tears promotes loss of stability akin to human dry eye tears. Stability of these and dry eye tears is rescuable with C- but not N-terminal proteoforms. Repeated topical application in rabbits reveals a proteoform turnover time of 7 to 33 h with gradual loss from human tear lipid that retains bioactivity without further processing. Thus, the processed C-terminus of lacritin that is deficient or absent in dry eye tears appears to play a key role in preventing tear film collapse and as a natural slow release mechanism that restores epithelial homeostasis.


Subject(s)
Dry Eye Syndromes/physiopathology , Eye Proteins/metabolism , Glycoproteins/physiology , Protein Isoforms/physiology , Tears/metabolism , Animals , Disease Models, Animal , Humans , Meibomian Glands/physiology , Rabbits
16.
Biochimie ; 180: 104-120, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33164889

ABSTRACT

Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.


Subject(s)
Proteins/physiology , Biological Variation, Population , Genetic Variation , Humans , Mutation , Protein Isoforms/physiology , Substrate Specificity
17.
Endocrinology ; 162(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33300995

ABSTRACT

Androgen receptor (AR) signaling continues to drive castration-resistant prostate cancer (CRPC) in spite of androgen deprivation therapy (ADT). Constitutively active shorter variants of AR, lacking the ligand binding domain, are frequently expressed in CRPC and have emerged as a potential mechanism for prostate cancer to escape ADT. ARv7 and ARv567es are 2 of the most commonly detected variants of AR in clinical samples of advanced, metastatic prostate cancer. It is not clear if variants of AR merely act as weaker substitutes for AR or can mediate unique isoform-specific activities different from AR. In this study, we employed LNCaP prostate cancer cell lines with inducible expression of ARv7 or ARv567es to delineate similarities and differences in transcriptomics, metabolomics, and lipidomics resulting from the activation of AR, ARv7, or ARv567es. While the majority of target genes were similarly regulated by the action of all 3 isoforms, we found a clear difference in transcriptomic activities of AR versus the variants, and a few differences between ARv7 and ARv567es. Some of the target gene regulation by AR isoforms was similar in the VCaP background as well. Differences in downstream activities of AR isoforms were also evident from comparison of the metabolome and lipidome in an LNCaP model. Overall our study implies that shorter variants of AR are capable of mediating unique downstream activities different from AR and some of these are isoform specific.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/physiology , Alternative Splicing/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Lipid Metabolism/genetics , Male , Mutant Proteins/physiology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms/physiology , Receptors, Androgen/chemistry , Receptors, Androgen/genetics
18.
PLoS One ; 15(12): e0231561, 2020.
Article in English | MEDLINE | ID: mdl-33275600

ABSTRACT

The shape of a neuron facilitates its functionality within neural circuits. Dendrites integrate incoming signals from axons, receiving excitatory input onto small protrusions called dendritic spines. Therefore, understanding dendritic growth and development is fundamental for discerning neural function. We previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: EphA7 restricts dendritic growth early and promotes dendritic spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that EphA7 full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms are dynamically expressed in the developing cortex. Peak expression of EphA7-FL overlaps with dendritic elaboration around birth, while highest expression of EphA7-T1 coincides with dendritic spine formation in early postnatal life. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 shifts during development, such that in vivo inhibition of mTOR by rapamycin in EphA7-mutant neurons ameliorates dendritic branching, but not dendritic spine phenotypes. Finally, direct interaction between EphA7-FL and EphA7-T1 is demonstrated in cultured cells, which results in reduction of EphA7-FL phosphorylation. In cortex, both isoforms are colocalized to synaptic fractions and both transcripts are expressed together within individual neurons, supporting a model where EphA7-T1 modulates EphA7-FL repulsive signaling during development. Thus, the divergent functions of EphA7 during cortical dendrite development are explained by the presence of two variants of the receptor.


Subject(s)
Cerebral Cortex/embryology , Dendrites/metabolism , Receptor, EphA7/metabolism , Animals , Axons/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Dendritic Spines/metabolism , Male , Mice, Inbred C57BL/embryology , Neurons/metabolism , Organogenesis , Protein Isoforms/physiology , Rats , Rats, Sprague-Dawley/embryology , Receptor, EphA7/physiology , Signal Transduction
19.
Mol Cell Neurosci ; 109: 103562, 2020 12.
Article in English | MEDLINE | ID: mdl-32987141

ABSTRACT

Abnormal dendritic arbor development has been implicated in a number of neurodevelopmental disorders, such as autism and Rett syndrome, and the neuropsychiatric disorder schizophrenia. Postmortem brain samples from subjects with schizophrenia show elevated levels of NOS1AP in the dorsolateral prefrontal cortex, a region of the brain associated with cognitive function. We previously reported that the long isoform of NOS1AP (NOS1AP-L), but not the short isoform (NOS1AP-S), negatively regulates dendrite branching in rat hippocampal neurons. To investigate the role that NOS1AP isoforms play in human dendritic arbor development, we adapted methods to generate human neural progenitor cells and neurons using induced pluripotent stem cell (iPSC) technology. We found that increased protein levels of either NOS1AP-L or NOS1AP-S decrease dendrite branching in human neurons at the developmental time point when primary and secondary branching actively occurs. Next, we tested whether pharmacological agents can decrease the expression of NOS1AP isoforms. Treatment of human iPSC-derived neurons with d-serine, but not clozapine, haloperidol, fluphenazine, or GLYX-13, results in a reduction in endogenous NOS1AP-L, but not NOS1AP-S, protein expression; however, d-serine treatment does not reverse decreases in dendrite number mediated by overexpression of NOS1AP isoforms. In summary, we demonstrate how an in vitro model of human neuronal development can help in understanding the etiology of schizophrenia and can also be used as a platform to screen drugs for patients.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Dendrites/ultrastructure , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Neurons/cytology , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Cells, Cultured , Clozapine/pharmacology , Drug Evaluation, Preclinical , Fluphenazine/pharmacology , Gene Expression Regulation/drug effects , Glutamic Acid/physiology , Haloperidol/pharmacology , Humans , Induced Pluripotent Stem Cells/metabolism , Ion Channels/physiology , Nerve Tissue Proteins/physiology , Neural Stem Cells/metabolism , Neurons/drug effects , Neurons/metabolism , Oligopeptides/pharmacology , Patch-Clamp Techniques , Protein Isoforms/physiology , Schizophrenia/etiology , Schizophrenia/genetics , Serine/pharmacology
20.
Biochem Biophys Res Commun ; 532(3): 377-384, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32883521

ABSTRACT

Embryonic stem (ES) cells are unique in their ability to self-renew indefinitely while maintaining pluripotency. Krüppel-like factor (Klf) 4 is an important member of the Klf family that is known to play a key role in pluripotency and somatic cell reprogramming. However, the identification and functional comparison of Klf4 splicing isoforms in mouse ESCs (mESCs) remains to be elucidated. Here, we identified three novel alternative splicing variants of Klf4 in mESCs-mKlf4-108, mKlf4-375 and mKlf4-1482-that are distinct from the previously known mKlf4-1449. mKlf4-1449 and mKlf4-1482 may stimulate the growth of ESCs, while mKlf4-108 can only promote the growth of ESCs in LIFlow/serum conditions. In addition, both mKlf4-1449 and mKlf4-1482 can inhibit the differentiation of mESCs. However, the ability of mKlf4-1482 to promote self-renewal and inhibit differentiation is not as strong as that of mKlf4-1449. In contrast, both mKlf4-108 and mKlf4-375 may have the ability to induce endodermal differentiation. Taken together, we have identified for the first time the existence of alternative splicing variants of mKlf4 and have revealed their different roles, which provide new insights into the contribution of Klf4 to the self-renewal and pluripotency of mouse ESCs.


Subject(s)
Alternative Splicing , Cell Self Renewal/genetics , Cell Self Renewal/physiology , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/physiology , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/physiology , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Codon, Nonsense , Kruppel-Like Factor 4 , Mice , Models, Biological , Poly A/genetics , Protein Isoforms/genetics , Protein Isoforms/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...